
Docs Home → Develop Applications → PHP Driver →

Aggregation Builder

Overview
In this guide, you can learn how to perform aggregations and construct pipelines by using the Laravel

MongoDB aggregation builder. The aggregation builder lets you use a type-safe syntax to construct a

MongoDB aggregation pipeline.

An aggregation pipeline is a data processing pipeline that sequentially performs transformations and

computations on data from the MongoDB database, then outputs the results as a new document or set

of documents.

An aggregation pipeline is composed of aggregation stages. Aggregation stages use operators to

process input data and produce data that the next stage uses as its input.

The Laravel MongoDB aggregation builder lets you build aggregation stages and aggregation

pipelines. The following sections show examples of how to use the aggregation builder to create the

stages of an aggregation pipeline:

Add the Aggregation Builder Dependency

Create an Aggregation Pipeline

Create a Custom Operator Factory

Add the Aggregation Builder Dependency
The aggregation builder is part of the mongodb/builder package. You must add this package as a

dependency to your project to use it. Run the following command to add the aggregation builder

dependency to your application:

When the installation completes, verify that the composer.json �le includes the following line in the

require object:

Create an Aggregation Pipeline
To start an aggregation pipeline, call the Model::aggregate() method. Then, chain the aggregation

stage methods in the sequence you want them to run.

The aggregation builder includes the following namespaces that you can import to build aggregation

stages:

MongoDB\Builder\Accumulator

MongoDB\Builder\Expression

MongoDB\Builder\Query

MongoDB\Builder\Type

This section features the following examples, which show how to use common aggregation stages and

combine stages to build an aggregation pipeline:

Match Stage Example

Group Stage Example

Sort Stage Example

Project Stage Example

Aggregation Pipeline Example

To learn more about MongoDB aggregation operators, see Aggregation Stages in the Server manual.

Sample Documents

The following examples run aggregation pipelines on a collection represented by the User model. You

can add the sample data by running the following insert() method:

Match Stage Example

You can chain the match() method to your aggregation pipeline to specify a query �lter. If you omit

this stage, the aggregate() method outputs all the documents in the model's collection for the

following stage.

This aggregation stage is o�en placed �rst to retrieve the data by using available indexes and reduce

the amount of data the subsequent stages process.

This example constructs a query �lter for a match aggregation stage by using the

MongoDB\Builder\Query builder. The match stage includes the the following criteria:

Returns results that match either of the query �lters by using the Query::or() function

Matches documents that contain an occupation �eld with a value of "designer" by using the

Query::query() and Query::eq() functions

Matches documents that contain a name �eld with a value of "Eliud Nkosana" by using the

Query::query() and Query::eq() functions

Click the VIEW OUTPUT bu�on to see the documents returned by running the code:

Group Stage Example

You can chain the group() method to your aggregation pipeline to modify the structure of the data by

performing calculations and grouping it by common �eld values.

This aggregation stage is o�en placed immediately a�er a match stage to reduce the data

subsequent stages process.

This example uses the MongoDB\Builder\Expression builder to de�ne the group keys in a group

aggregation stage. The group stage speci�es the following grouping behavior:

Sets the value of the group key, represented by the _id �eld, to the �eld value de�ned by the

Expression builder

References the document values in the occupation �eld by calling the

Expression::fieldPath() function

Click the VIEW OUTPUT bu�on to see the documents returned by running the code:

Sort Stage Example

You can chain the sort() method to your aggregation pipeline to specify the documents' output

order.

You can add this aggregation stage anywhere in the pipeline. It is o�en placed a�er the group stage

since it can depend on the grouped data. We recommend placing the sort stage as late as possible in

the pipeline to limit the data it processes.

To specify an sort, set the �eld value to the Sort::Asc enum for an ascending sort or the Sort::Desc

enum for a descending sort.

This example shows a sort() aggregation pipeline stage that sorts the documents by the name �eld

to Sort::Desc, corresponding to reverse alphabetical order. Click the VIEW OUTPUT bu�on to see the

documents returned by running the code:

Project Stage Example

You can chain the project() method to your aggregation pipeline to specify which �elds from the

documents to display by this stage.

To specify �elds to include, pass the name of a �eld and a truthy value, such as 1 or true. All other

�elds are omi�ed from the output.

Alternatively, to specify �elds to exclude, pass each �eld name and a falsy value, such as 0 or false.

All other �elds are included in the output.

This example shows how to use the project() method aggregation stage to include only the name

�eld and exclude all other �elds from the output. Click the VIEW OUTPUT bu�on to see the data

returned by running the code:

Aggregation Pipeline Example

This aggregation pipeline example chains multiple stages. Each stage runs on the output retrieved

from each preceding stage. In this example, the stages perform the following operations sequentially:

Add the birth_year �eld to the documents and set the value to the year extracted from the

birthday �eld.

Group the documents by the value of the occupation �eld and compute the average value of

birth_year for each group by using the Accumulator::avg() function. Assign the result of the

computation to the birth_year_avg �eld.

Sort the documents by the group key �eld in ascending order.

Create the profession �eld from the value of the group key �eld, include the birth_year_avg

�eld, and omit the _id �eld.

Click the VIEW OUTPUT bu�on to see the data returned by running the code:

Create a Custom Operator Factory
When using the aggregation builder to create an aggregation pipeline, you can de�ne operations or

stages in a custom operator factory. A custom operator factory is a function that returns expressions

or stages of an aggregation pipeline. You can create these functions to improve code readability and

reuse.

This example shows how to create and use a custom operator factory that returns expressions that

extract the year from a speci�ed date �eld.

The following function accepts the name of a �eld that contains a date and returns an expression that

extracts the year from the date:

The example aggregation pipeline includes the following stages:

addFields(), which calls the custom operator factory function to extract the year from the

birthday �eld and assign it to the birth_year �eld

project(), which includes only the name and birth_year �elds in its output

Click the VIEW OUTPUT bu�on to see the data returned by running the code:

← →

Laravel MongoDB

The aggregation builder feature is available only in Laravel MongoDB versions 4.3 and later.

To learn more about running aggregations without using the aggregation builder, see

 in the Query Builder guide.

TIP

Aggregations

composer require mongodb/builder:^0.2

"mongodb/builder": "^0.2",

To learn more about builder classes, see the mongodb/mongodb-php-builder GitHub

repository.

TIP

User::insert([

 ['name' => 'Alda Gröndal', 'occupation' => 'engineer', 'birthday' => new UTC
 ['name' => 'Francois Soma', 'occupation' => 'engineer', 'birthday' => new UT
 ['name' => 'Janet Doe', 'occupation' => 'designer', 'birthday' => new UTCDat
 ['name' => 'Eliud Nkosana', 'occupation' => 'engineer', 'birthday' => new UT
 ['name' => 'Bran Steafan', 'occupation' => 'engineer', 'birthday' => new UTC
 ['name' => 'Ellis Lee', 'occupation' => 'designer', 'birthday' => new UTCDat
]);

If you omit the match() method, the aggregation pipeline matches all documents in the

collection that correspond to the model before other aggregation stages.

TIP

$pipeline = User::aggregate()

 ->match(Query::or(

 Query::query(occupation: Query::eq('designer')),
 Query::query(name: Query::eq('Eliud Nkosana')),
));

$result = $pipeline->get();

VIEW OUTPUT

The Query::or() function corresponds to the $or MongoDB query operator. To learn more

about this operator, see $or in the Server manual.

TIP

$pipeline = User::aggregate()

 ->group(_id: Expression::fieldPath('occupation'));
$result = $pipeline->get();

VIEW OUTPUT

This example stage performs a similar task as the distinct() query builder method. To

learn more about the distinct() method, see the usage

example.

TIP

Retrieve Distinct Field Values

$pipeline = User::aggregate()

 ->sort(name: Sort::Desc);

$result = $pipeline->get();

VIEW OUTPUT

When you specify �elds to include, the _id �eld is included by default. To exclude the _id

�eld, explicitly exclude it in the projection stage.

TIP

$pipeline = User::aggregate()

 ->project(_id: 0, name: 1);

$result = $pipeline->get();

VIEW OUTPUT

$pipeline = User::aggregate()

 ->addFields(

 birth_year: Expression::year(

 Expression::dateFieldPath('birthday'),
),

)

 ->group(

 _id: Expression::fieldPath('occupation'),
 birth_year_avg: Accumulator::avg(Expression::numberFieldPath('birth_year')),
)

 ->sort(_id: Sort::Asc)

 ->project(profession: Expression::fieldPath('_id'), birth_year_avg: 1, _id: 0);

VIEW OUTPUT

Since this pipeline omits the match() stage, the input for the initial stage consists of all the

documents in the collection.

NOTE

public function yearFromField(string $dateFieldName): YearOperator

{

 return Expression::year(

 Expression::dateFieldPath($dateFieldName),

);

}

$pipeline = User::aggregate()

 ->addFields(birth_year: $this->yearFromField('birthday'))
 ->project(_id: 0, name: 1, birth_year: 1);

VIEW OUTPUT

Write Operations Eloquent Models

On this page

Overview

Add the Aggregation Builder Dependency

Create an Aggregation Pipeline

Sample Documents

Match Stage Example

Group Stage Example

Sort Stage Example

Project Stage Example

Aggregation Pipeline Example

Create a Custom Operator Factory

Ask MongoDB AI

Rate this page

Support Sign In Try FreeProducts Resources Solutions Company Pricing

https://www.mongodb.com/docs/
https://www.mongodb.com/docs/develop-applications/
https://www.mongodb.com/docs/drivers/php-drivers/
https://www.mongodb.com/docs/manual/reference/operator/aggregation-pipeline/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/query-builder/#std-label-laravel-query-builder-aggregations
https://github.com/mongodb/mongo-php-builder/
https://github.com/mongodb/mongo-php-builder/
https://www.mongodb.com/docs/manual/reference/operator/query/or/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/usage-examples/distinct/#std-label-laravel-distinct-usage
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/fundamentals/write-operations/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/eloquent-models/
https://www.mongodb.com/
https://www.mongodb.com/support
https://account.mongodb.com/account/login
https://www.mongodb.com/cloud/atlas/register
https://www.mongodb.com/pricing

